I Development of the Atomic Theory:

A.	. The Beginning of Atomic Theory:			
	1. Democritus inBC, called the smallest particle an			
	a. He said an atom was and and			
	made of a material.			
	b. He was right,,,sort ofAn is the			
	particle into which an can be divided.			
В.	<u>Dalton's Atomic Theory Based on Experiments</u> : (almost right)			
	1. All substances are made of which cannot be			
	or			
	2. Atoms of theelement arealike, and			
	atoms ofelements are			
	3. Atomswith other atoms to make new			
C .	Thomson's Discovery of Electrons:			
	1. In he discovered there are small			
	INSIDE the atom. "Hot Electron"			
	2. He discovered charged particles called			
D	Rutherford's Atomic "Shooting Gallery":			
	1. He shot particles at gold foil, and some of			
	them back instead of going through.			
	2. This showed that there was a, extremely,			
	charged part in the center, a			
	3. He calculated the nucleus was times smaller			
	than the diameter of the atom.			

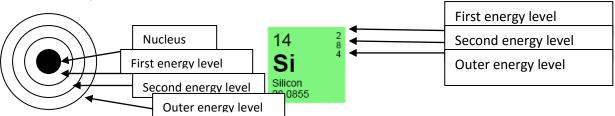
E. Where are the Electrons?:	Topic 4 - Page 2
1. Bohr Model:	
a. Electrons move around	the nucleus in definite
b. Paths are called	levels, or
2. Electron Cloud Model:	
a. Electrons do	_ travel in definite paths.
b. Electrons surround th	e nucleus in
II The Atom: (has a diameter of	about cm.)
1. What is an Atom Made C	•
Electrons are negatively	Protons are positively charged particles in the nucleus of an atom.
charged particles found in electron clouds outside the nucleus. The size of the	
electron clouds determines the size of the atom.	
The nucleus is the small, dense, positively charged	Neutrons are particles in the nucleus of an atom
center of the atom. It contains most of the atom's mass.	that have no charge.
GOTT 2 HIGGS.	
The diameter of the	
nucleus is 1/100,000 the diameter of the atom.	
a. Proton:	
• charg	ed particle in the
	ass of 1
b. Neutron:	
• Has a	electrical charge.
	more massive than a proton.
	rill about amu.
c. Electron:	m about ana.
	electrical charge.
• It	
	in electrons to equal
	•
The mass of one	<u> </u>

a. <u>Atomic Ni</u> in the nu					of
b	aton	ns of	an ele	ement h	ave the
atomic nur	nber	•			
c. Atomic M	ass 1	Num bo	er - is	s the	of the
		_ and		i	n an atom.
Element	Р	N	Е	A. #	A. Mass
Hydrogen	1	0	1	1	1
Helium	2	2	2	2	4
Carbon	6	6	6	6	12
Carbon ¹⁴	6	8	6	6	14
Nitrogen	7	7	7	7	14
Oxygen	8	8	8	8	16
d. Carbon 14	is an			 	_ of carbon.
* An isoto	pe o	f an	eleme	nt has t	he same
numbei	of			as the	e element but

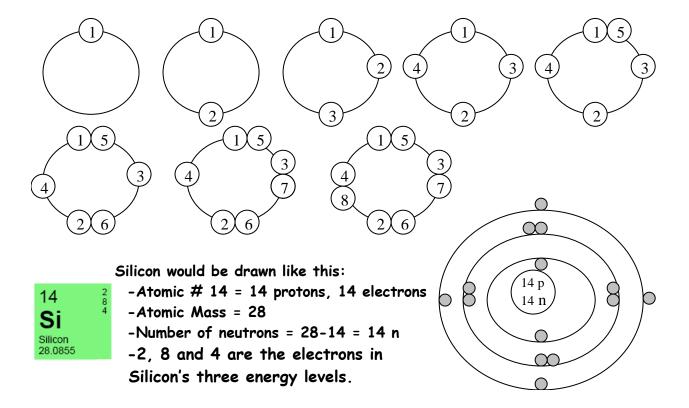
I Arranging the Elements:

<u>Ar</u>	rang	ging the	Elements	<u>s:</u>	
A .	Disc	covering	a Pattern:		Co
	1	. Dmitri		discovered	W C
		α		to the elements.	SUPER
	2	. He arr	ranged the	elements in order	K of
				·	1869
	3	. He sav	v a	that repea	ted every 7 elements
	4	. Period	ic means _		
	5	. With t	this table,	he could predict	elements
В.	Cha	inging th	e Arrangen	nent (the Modern Pe	eriodic Table):
	1.	A few e	lements did	fit into Mer	ndeleev's table
			Moseley det	termined the	
	3	All elen		in an a _ into table when ar	
	•	5.5.,			1914
	4	Fools of			
	4.	Each ei	ement is in	its own "box" on th	e tadie.
		a. Each	element is	represented by a _	··•
		b. Aton	nic Number	is the number of $_$	
		in th	e element's	·	
		c. Ato	mic Mass is	the number of	&
			 	in the element's n	ucleus.
			, –	→ Atomic number	
			6	→ Element symbol	
			Carbon ⁻	→ Element name	
			Carboll		

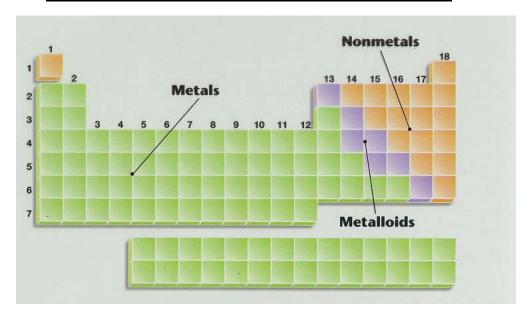
12.01 —


C. <u>Decoding the Periodic Table</u> :	
1. Element names come from many such a	s
and	
a. Examples: and	
2. The Periodic Table is organized into rows called	and
columns called or	
3. <u>Periods</u> : The 7 horizontal in the periodic table	
A. Properties such as and	
gradually from left to right.	
b. Each periodic tells you the	
number of in an atom.	
c. For example the atoms of all elements in period 3 all	have
energy levels (shells) of electrons.	
# Groups: 177 20 20 40 41 45 45 45 45 47 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	y
a. The 18 vertical in the periodic table.	
b. A group is also called a	
c. Elements in the same group have chemical and	l
physical	
d. Within groups 1–2, 13–18, elements have the same number of	
in their outer	
e. These outer electrons are called electrons and are	
important in the forming of to create a	.·
f. Elements in groups do not follow this rule.	
g. Another exception is the element Helium, which is found in group	18
and only has electrons.	

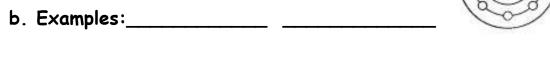
II Atom Diagrams


- A. What is an Atom Diagram, aka Bohr Model?
 - 1. Atom diagrams help us visualize atoms that are too small to be seen.
 - 2. These models also help us understand how atoms combine to form compounds.
 - 3. Remember, the electrons do not actually travel in these circular orbits (energy levels) but are thought to be found as an electron cloud.

B. Drawing atom Diagrams:


- 1. Determine the number of protons, neutrons, and electrons
- 2. Determine the number of energy levels (AKA shells)
 - a. Period (row) number= the number of energy levels
- 3. Find the number of electrons in each energy level by looking at the periodic table.

- 4. Draw the diagram starting from the first energy level (inside)
 - a. Electrons should be filled in on top, bottom, right, left one at time and repeated until all electrons are placed in each energy level.
 - b. DO NOT randomly space the electrons!



D. The Periodic Table and Classes of Elements:

1.	Elements	are	classified	as	······································	
					and	

- 2. Metals: _____ elements are metals. (about 80%)
 - a. They have ____ or fewer electrons in their outer _____level.

Most are	at room temperature.
	-

They _____ their outer electrons when making a compound.

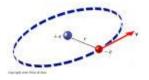
3. 1	Nonme [.]	tals: elements are nonmetals. (about 20%)
	α.	They have or more electrons in their energy level (or shell).
	b.	Examples: Oxygen atom and its electrons
	c.	Characteristics: More than are at room temperature
		They or their outer electrons when making a compound.
	4. M	etalloids:
	α.	They the zigzag line (stair step) on the table.
	b.	Examples:
	d.	Characteristics:
		They have properties of metals & non metals.
		Some are
		Some one

II GROUPING THE ELEMENTS:

A. <u>Group 1 (IA) : Alkali Metals</u> : 1A 2A 3A 4A 5A 6A 7A
 Have electron in outer shell, so they lose it easily in compounds. Properties:
a. Most chemically of all metals.
b
low,
c. React withso stored in
3. Examples:
B. Group 2 (IIA): Alkaline-Earth Metals:
 Have electrons in outer shell, & they can give both up fairly easily. Properties:
a reactive than alkali metals.
b , good ,
higher ,
c. Compounds are mostly (&)
3. Examples:
C. <u>Group 3-12 (IB-VIIIB)</u> : Transition Metals:
 They have or electrons in outer shell, they don't give them up as easily. Properties:
a reactive than Groups IA and IIA
b good ,
higher &points
c. Compounds are (&

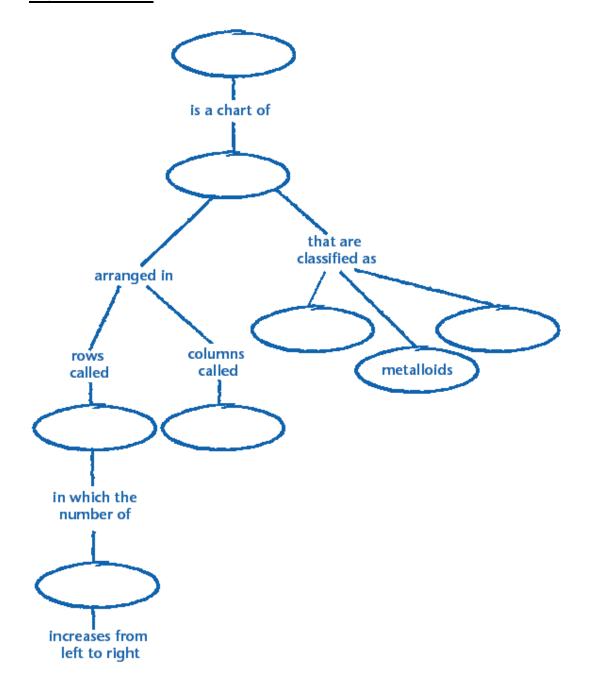
3. Lanthanides & Actinides:	inner transition metals
a. In 2 rows on	_so
table is not too	short-lived inner transition metals
b. Lanthanides are	_ &metals.
c. Actinides are	()
and any after Atomic #	are
D. Group 13 (IIIA) : Boron Family:	1A 8A 3A 4A 5A 6A 7A 3A 4A 5A 6A 7A
1. They have electrons in the outer shell.	
2. One and 4	··
3. Properties:	
4. Aluminum:	
a most abundant elem	ent in earth's crust.
b. Found only in	
c,	, good
d. Used in,	
5. Boron: the only metalloid in thi	s group
a. Used in (and
E. Group 14 (IVA) : Carbon Family:	
1. They have electrons in ou	iter shell.
2metal,metalloids, _	metals.
3. Common property:	Carbon
4. Carbon:	Basis of Life's
a. Very important in	things.
b% of all compounds he	ave
c. Found in:	

5. <u>Silicon:</u>	
a most abundant element in earth's crust.	
b. Found in sand (silicon &)	
c. Used in as semiconductor.	
6. Other members:	
F. Group 15 (VA): Nitrogen Family:	2 2 2 3
1. They have electrons in outer shell.	1
2 nonmetals,metalloids, metal.	
3. Nitrogen:	
a% of our air.	
b,	
c. nonflammable	
4. Other members:	
G. Group 16 (VIA): Oxygen Family:	
1. They have electrons in outer shell.	I
2 nonmetals, metalloid, metal	
3. Oxygen:	
a % of our air.	
b abundant element in earth's	
cfor life.	
d. In the air: Oxygen = Ozone =	
e. Oxygen compounds are called	
Water: Hydrogen Peroxide:	
4. Sulfur:	
a acid - used in the chemical industry.	
5. Other members:	


H. Group 17 (VIIA) : Halogens:	
 They have electrons in outer shell, so they only need 1 more for a complete shell. 	
2. Most chemically of nonmetals.	
3. Properties:	
a	& CHLORINE
b	HALLELUJAH!
c	
4. Chlorine:	
a. Most halogen.	
b gas	
c. Kills	
5. Uses:	
a. Fluorine:	
b. Iodine:	
c. Chlorine:	
I. Group 18 (VIIIA) : Noble Gases:	
1. They have electrons in outer shell, so the outer shell is full.	
2. All are and	
3. Properties:	
o. Tropernes	(inert)
4. Helium:	(men)
a. Less than air, used in	

5. Other members: _____

6. Many used in _____


J. Hydrogen:

1. Has only ____ electron, but _____ do not match, so set apart.

- 2. Most abundant element in the _____.
- 3. Found in _____.
- 4. Properties:_____, ____, ____ explosive reactions with _____

Small Review:

